Protein Secondary Structure Prediction Based on Denoeux Belief Neural Network
نویسندگان
چکیده
Predicting the secondary structure of protein is an important step towards obtaining its three dimensional structure and consequently its function. At present, the best predictors are based on machine learning techniques, in particular neural network architectures. We introduce a new architecture called Denoeux belief neural network (DBNN) for the prediction problem. DBNN uses reference patterns as items of evidence regarding the class membership of each input pattern under consideration. This evidence is represented by basic belief assignments (BBAs) and combined using the Dempster’s rule. DBNN has demonstrated excellent performance in other classification problems compared to existing statistical and neural network techniques. Our system, UTMPred incorporated the DBNN architecture and demonstrated a minimum protein secondary structure prediction accuracy, Q8 of 62.7% that is comparable to the best existing predictor, SSpro8 which has a classification accuracy of 62-63% range.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملProtein secondary structure prediction using sigmoid belief networks to parameterize segmental semi-Markov models
In this paper, we merge the parametric structure of neural networks into a segmental semi-Markov model to set up a Bayesian framework for protein structure prediction. The parametric model, which can also be regarded as an extension of a sigmoid belief network, captures the underlying dependency in residue sequences. The results of numerical experiments indicate the usefulness of this approach.
متن کاملAn adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief
Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملThe Hybrid Method of Fuzzy Feed-Forward Neural Network for Predicting Protein Secondary Structure
With respect to the fact that the prediction of Protein secondary structure based on amino acids is very important, therefore, this study tries to present a new method based on the fuzzy combinational structure of a set of feed-forward neural networks so that the prediction accuracy of Protein secondary structure can be improved compared with the existing methods. Neural networks used in this p...
متن کامل